A first-order multigrid method for bound-constrained convex optimization
نویسندگان
چکیده
منابع مشابه
An adaptive accelerated first-order method for convex optimization
In this paper, we present a new accelerated variant of Nesterov’s method for solving a class of convex optimization problems, in which certain acceleration parameters are adaptively (and aggressively) chosen so as to: preserve the theoretical iteration-complexity of the original method, and; substantially improve its practical performance in comparison to the other existing variants. Computatio...
متن کاملA Line Search Multigrid Method for Large-scale Convex Optimization
Abstract. We present a line search multigrid method based on Nash’s MG/OPT multilevel optimization approach for solving discretized versions of convex infinite dimensional optimization problems. Global convergence is proved under fairly minimal requirements on the minimization method used at all grid levels. In particular, our convergence proof does not require that these minimization, or so-ca...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
First-order Methods for Geodesically Convex Optimization
Geodesic convexity generalizes the notion of (vector space) convexity to nonlinear metric spaces. But unlike convex optimization, geodesically convex (g-convex) optimization is much less developed. In this paper we contribute to the understanding of g-convex optimization by developing iteration complexity analysis for several first-order algorithms on Hadamard manifolds. Specifically, we prove ...
متن کاملA Block Successive Upper Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization
Consider the problem of minimizing the sum of a smooth convex function and a separable nonsmooth convex function subject to linear coupling constraints. Problems of this form arise in many contemporary applications including signal processing, wireless networking and smart grid provisioning. Motivated by the huge size of these applications, we propose a new class of first order primal-dual algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2016
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2016.1146267